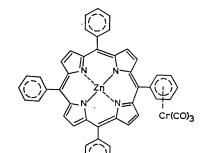
Tricarbonylchromium Complexes of $\alpha\beta\gamma\delta$ -Tetraphenylporphinzinc


By N. J. GOGAN* and Z. U. SIDDIQUI

(Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada)

Summary Complexes of $\alpha\beta\gamma\delta$ -tetraphenylporphinzinc in which one and two of the phenyl rings are π -substituted with tricarbonylchromium groups have been prepared and characterized.

ELECTRON distribution in metallo-porphyrins is of considerable importance in many life processes, for example in photosynthesis and cell energy transfer (cytochromes in particular). We have prepared two complexes of a series the study of which should help the understanding of electron distribution and transfer in the porphyrin system. These are complexes of $\alpha\beta\gamma\delta$ -tetraphenylporphinzinc, Zn(tpp), in which a tricarbonylchromium group is attached to one and two of the phenyl rings.

The complexes were prepared by allowing $Cr(CO)_6$ and Zn(tpp) to react in refluxing di-n-butyl ether in an atmosphere of pure nitrogen. Chromatography of the resulting material on Florisil yielded three bands, a red band, Zn(tpp), a brownish-green band, (I), and a greenish-brown band, (II). Details of the spectra of these compounds are given in the Table. The n.m.r. assignments follow those of Webb

a single band at about τ 1·1 assigned to the β -pyrrole proton resonances, two bands at about 1·8 and 2·2 assigned to

FIGURE

	U.v./visible (CHCl ₃)	I.r. cm ⁻¹ (CHCl ₃)	N.m.r. (τ) (CDCl ₃) ^a	
Compound	nm $(10^3\epsilon)$	CO stretching region	β-Pyrrole	Phenyl
Zn(tpp)	420(600), 550(22), 595(6.0)	none	1.17	1.80, 2.23
(I)	$422(230), 562(13), 612(6\cdot3)$	1978, 1910	1.11	1.81, 2.25;
				3·33, 4·21
(11)	424(200), 570(12), 621(6.9)	1978, 1910	1.09	1.83, 2.26
				3·44, 4·20

^a The phenyl resonances were broad and these values represent the centres of the maxima.

and Fleischer for $\alpha\beta\gamma\delta$ -tetraphenylporphin.¹ The CO stretching vibrations and the shifts in phenyl resonances are typical of Cr(CO)₃ groups π -bonded to phenyl rings. For example in tricarbonylbenzenechromium the bands at 1977 and 1910 cm⁻¹ are assigned to CO stretching vibrations² and the phenyl proton resonances in the n.m.r. are shifted 1.67 p.p.m. upfield from benzene.³

When solutions of the complexes in $CHCl_3$ were left for a few days the visible spectra changed to that of Zn(tpp). Heating the solid materials up to 250° gave no visible change, however the visible spectrum in $CHCl_3$ of the material that had been heated above 110° was that of Zn(tpp). This indicates decomposition and this behaviour proton resonances of phenyl rings without $Cr(CO)_3$ groups attached, and two bands at about $3\cdot 3$ and $4\cdot 2$ assigned to proton resonances of phenyl rings with $Cr(CO)_3$ groups attached. For compound (I) the ratio of intensities of proton resonances due to uncomplexed phenyls to that of complexed phenyl is 3:1, for compound (II) this ratio is 1:1. In both compounds the ratio of intensities of the β -pyrrole resonances to total phenyl is approximately 8:20. This led us to suggest a structure for (I) in which a $Cr(CO)_3$ group is π -bonded to one phenyl ring and for (II) in which $Cr(CO)_3$ groups are π -bonded to two of the phenyl rings. The structure for (I) is shown in the Figure. Several isomers are possible for (II).

is typical of tricarbonyl- π -arenechromiums. The n.m.r. spectra of both compounds consist of three main areas,

Preliminary results indicate that similar complexes are formed from other M(tpp) where M is a 1st transition series metal.

- L. E. Webb and E. B. Fleischer, J. Chem. Phys., 1965, 43, 3100.
 D. A. Brown and H. Sloan, J. Chem. Soc., 1962, 3849.
 E. O. Fischer and H.-P. Fritz, Angew. Chem., 1961, 73, 353.

We thank the National Research Council of Canada for financial support.

(Received, January 12th, 1970; Com. 049.)